Smart textiles improve device connectivity for HMIs, medical applications

Researchers from the National University of Singapore (NUS) have incorporated conductive textiles called metamaterials into clothing to connect several wearable devices at once, which could be used for human-machine interfaces (HMIs), health monitoring and other medical applications.

By Gregory Hale August 31, 2019

One major trend in electronics has been the development of sensors, displays and smart devices seamlessly integrated to the human body.

Most of these wearable devices end up connected to a user’s smart phone and transmit all data via Bluetooth or Wi-Fi signals. But as users wear increasing numbers of wearable devices, and as the data they transmit increases in sophistication, more innovative connection methods are being sought.

Researchers from the National University of Singapore (NUS) have a new way for wearable devices to interconnect. They have incorporated conductive textiles into clothing to dynamically connect several wearable devices at once. This wireless body sensor network allows devices to transmit data with 1,000 times stronger signal than conventional technologies, meaning the battery life of all devices is dramatically improved. Wireless networks of these wearable devices on a body could be used for human-machine interfaces (HMIs), health monitoring and other medical applications.

Currently, almost all body sensors like smart watches connect to smartphones and other wearable electronics via radio-waves like Bluetooth and Wi-Fi. These waves radiate outwards in all directions, meaning that most of the energy is lost to the surrounding area. This method of connectivity drastically reduces the efficiency of the wearable technology as most of its battery life is consumed in attempting the connection.

Improve efficiency

As such, Assistant Professor John Ho and his team from the Institute for Health Innovation & Technology (NUS iHealthtech) and the NUS Faculty of Engineering wanted to confine the signals between the sensors closer to the body to improve efficiency.

Their solution was to enhance regular clothing with conductive textiles known as metamaterials. Rather than sending waves into surrounding space, these metamaterials are able to create “surface waves” which can glide wirelessly around the body on the clothes. This means that the energy of the signal between devices is held close to the body rather than spread in all directions. Hence, the wearable electronics use much less power than normal, and the devices can detect much weaker signals.

“This innovation allows for the perfect transmission of data between devices at power levels that are 1,000 times reduced. Or, alternatively, these metamaterial textiles could boost the received signal by 1,000 times which could give you dramatically higher data rates for the same power,” Ho said. In fact, the signal between devices is so strong it is possible to wirelessly transmit power from a smartphone to the device itself – opening the door for battery-free wearable devices.

Crucially, this signal boost does not require any changes to either the smartphone or the Bluetooth device – the metamaterial works with any existing wireless device in the designed frequency band.

Better user privacy

This method of networking devices also provides more privacy than conventional methods. Currently, radio-waves transmit signals several meters outward from the person wearing the device, meaning that personal and sensitive information could be vulnerable to potential eavesdroppers. By confining the wireless communication signal to within 10 cm of the body, Ho and his team created a network that is more secure.

The team has a first-year provisional patent on the metamaterial textile design, which consists of a comb-shaped strip of metamaterial on top of the clothing with an unpatterned conductor layer underneath. These strips can then be arranged on clothing in any pattern necessary to connect all areas of the body. The metamaterial itself is cost-effective, in the range of a few dollars per meter, and can be bought readily in rolls.

“We started with a specific metamaterial that was both flat and could support surface waves. We had to redesign the structure so that it could work at the frequencies used for Bluetooth and Wi-Fi, perform well even when close to the human body, and could be mass produced by cutting sheets of conductive textile,” Ho said.

Computer model design

The team’s design was created with the aid of a computer model to ensure successful communication in the radio frequency range and to optimize overall efficacy. The smart clothing is then fabricated by laser-cutting the conductive metamaterial and attaching the strips with fabric adhesive.

Once made, the smart clothes can be folded and bent with minimal loss to the signal strength, and the conductive strips can even be cut or torn, without inhibiting the wireless capabilities. The garments can also be washed, dried, and ironed just like normal clothing.

This content originally appeared on ISSSource.com. ISSSource is a CFE Media content partner. Edited by Chris Vavra, production editor, CFE Media, cvavra@cfemedia.com.

Original content can be found at isssource.com.


Author Bio: Gregory Hale is the editor and founder of Industrial Safety and Security Source (ISSSource.com), a news and information website covering safety and security issues in the manufacturing automation sector.

Related Resources